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Abstract— Today, many industrial companies must face chal-
lenges raised by maintenance. In particular, the anomaly detec-
tion problem is probably one of the most investigated. In this
paper we address anomaly detection in new train data by com-
paring them to a source of normal train behavior knowledge,
expressed as sequential patterns. To this end, fuzzy logic allows
our approach to be both finer and easier to interpret for experts.
In order to show the quality of our approach, experiments have
been conducted on real and simulated anomalies.

I. INTRODUCTION

Today, many industrial companies must face problems
raised by maintenance. The most common solution is called
curative maintenance, i.e., equipment is replaced or repaired
after the appearance of obvious failures, once the damage
has occurred. This maintenance strategy is not adequate
for various reasons. Concerning the financial aspect, few
hours of downtime can result in millions of dollars in losses
for industrial companies. In addition, curative maintenance
is also a problem for security reasons. In many critical
areas, equipment failures can cause death. For example,
it is estimated that approximately 5% of motor vehicle
accidents are caused by equipment malfunction or a lack of
maintenance1. Another aspect is related to the environment
and energy saving. Indeed, equipment that is worn or subject
to malfunctions often consumes more energy than equipment
operating optimally. In addition, systematic maintenance
planning is not a satisfactory solution being too expensive
compared to real needs. Reducing the problem of equipment
maintenance and making maintenance both faster and more
effective by anticipating serious breakdowns is thus a very
challenging and critical issue.

Preventive maintenance consists in detecting anomalous
behavior in order to prevent further damages and avoid more
costly maintenance operations. To this end, it is necessary
to monitor working equipment. Usually, monitoring data is
available through embedded sensors and provides important
information such as temperature, humidity rate, etc.

In this paper, we focus on the specific case of train main-
tenance. Trains monitoring is ensured by sensors positioned
on the main components to provide various information. We
propose a method to exploit this information in order to assist
the development of an effective preventive maintenance.

The requirements in the context of train maintenance are
twofold. First, it is important to provide a better understand-
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ing of monitored systems. Indeed, since train systems are
often complex and contain many components, experts have
little knowledge about their behavior. This lack of knowledge
makes the problem of maintenance very difficult. Second,
it could be of interest to get an overview of the normal
behavior. To this end, it is necessary to propose a way for
characterizing such normal behaviors from a huge amount
of historical data. In this paper, we show how we can be
directly address this problem by data mining techniques [1]
associated with fuzzy logic [2]. We also describe how we
design a system for detecting anomalies in train behavior
and help experts so that a detected problem can be dealt as
promptly as possible.

For example, considering normal data behavior expressed
by sequential patterns [3], a pattern could be “In 80% of train
journeys, a low value measured by sensor A is followed by
an average value measured by sensor B”, denoted as p =
〈(Alow)(Bavg)〉. As a consequence, if sensor B is measuring
an average value during a new train journey, and we observe
the previous value measured by sensor A was low, then we
can deduce that the pattern p is concordant with the actual
behavior of B. On the other hand, a pattern 〈(Alow)(Blow)〉
could be considered discordant since it expresses that a low
value measured by A is frequently followed by a low value
measured by B.

The general problem consists in making a coherent evalu-
ation of the conformity of a sensor behavior with respect to
the overall set of concordant or discordant patterns available.
In this process, fuzzy logic help refining the representation of
concordance and discordance notions. We take into account
the fact that a sequential pattern can be more or less
concordant or discordant. This aspect allows to emphasize
the more relevant patterns in order to enhance the anomaly
detection task.

This paper is organized as follows. Section II describes
the data representation in the context of train maintenance.
We present the anomaly detection for preventive maintenance
approach in Section III. Experiments conducted with real
and simulated data are described in Section IV. Section V
concludes the paper.

II. DATA PREPROCESSING

In this section, we address the problem of preprocessing
railway data. From raw data collected by sensors, we design
a suitable representation for data mining tasks.

The train monitoring system exploited contains a large set
of sensors distributed on the main components of each train
allowing to collect various information (e.g., temperature). A
complete description of these data is available in [4].



TABLE I
EXTRACT FROM SENSOR DATA.

TIME A B C ...

2008/03/27 06: 36: 39 0 16 16 ...
2008/03/27 06: 41: 39 82.5 16 16 ...
2008/03/27 06: 46: 38 135.6 19 21 ...
2008/03/27 06: 51: 38 105 22 25 ...

A. Sensor Data for Train Maintenance

In train maintenance following data must be considered.
Sensors. Each sensor (e.g., A, B, C in Table I) describes

one property of the global behavior of a train which can cor-
respond to different information (e.g., temperature, velocity,
acceleration).

Measurements. They stand for numerical values recorded
by the sensors and could be very noisy for different reasons
such as failures, data transfer, etc. Note that numerical values
collected by the sensors are discretized to obtain a set of data
more suitable for data mining.

Readings. They are defined as the set of values measured
by all sensors at a given date. The information carried out
by a reading could be considered as the state of the global
behavior observed at a given moment. Due to data trans-
fer, some errors may occur and then readings can become
incomplete or even entirely missing.

We consider handled data as those described in Table I,
where a reading for a given date (first column) is described
by sensor measurements (cells of other columns).

The behavior of a sensor is described by the numerical
values it measures. The discretization of these sensor values
is a preprocessing that, for example, has been used in [5]
and [6] to group values expressing the same information
into classes of values (e.g., a value could be low, medium
or high). For example, temperature values 25oC and 26oC
are different but very close, so they can be regarded as
carrying the same information. Moreover, for velocity as
well as acceleration sensors, we also consider a zero value
because it is a particular value that should not be confused
with non-zero values. A zero velocity indicates that the train
is stationary, while a non-zero velocity, no matter how low
it is, concerns a train in motion.

B. Granularity in Railway Data

Data collected from a train constitutes a list of readings
describing its behavior over time. Since such a representation
is not appropriate for knowledge extraction, we decompose
the list of readings at different levels of granularity and then
consider the three following concepts journeys, episodes and
episode fragments defined as follows:

1) Journey: The definition of a journey is associated to
the railway context. For a train, a journey stands for the list of
readings collected during the time interval between departure
and arrival. Usually, a journey is several hours long and has
some interruptions when the train stops in railway stations.

We consider the decomposition into journeys as the coarsest
granularity of railway data.

Let minDuration be a minimum duration threshold,
maxStop a maximum stop duration, and J a list of readings
(rm, ..., ri, ...rn), where ri is the reading collected at time i.
J is a journey if:

1) (n − m) > minDuration,
2) @(ru, ..., rv, ...rw) ⊆ J such that:{

(w − u) > maxStop,

and ∀ v ∈ [u,w], velocity(v) = 0.

2) Episode: The main issue for characterizing train behav-
ior is to compare similar elements. However, as trains can
have different routes the notion of journey is not sufficient
(for instance, between two different journeys, we could have
different numbers of stops as well as a different delay
between two railway stations). This is the reason why we
segment the journeys into episodes to obtain a finer level of
granularity. Episodes are obtained by relying on the stops of
a train (easily recognizable considering the train velocity).

An episode is defined as a list of readings (rm, ...ri, ..., rn)
such as:

• velocity(m) = 0 and velocity(n) = 0 2,
• if m < i < n, velocity(i) 6= 0.

Fig. 1. Segmentation of a journey into episodes.

Figure 1 describes a segmentation of a journey into
episodes by considering the velocity changes. This level
of granularity is considered as the most relevant because
it provides us with a set of homogeneous data. However,
we can segment episodes in order to obtain a more detailed
representation and a finer granularity level.

3) Episode Fragment: The level of granularity corre-
sponding to the fragments is based on the fact that a
train’s behavior during an episode can be easily divided into
three chronological steps. First, the train is stationary (i.e.,
velocity 0) then an acceleration begins. We call this step
the starting step. More formally, let E = (rm, ..., rn) be an
episode. The startingfragment Estarting = (rm, ...rk) of
this episode is a list of readings such as:

∀i, j ∈ [m, k], i < j ⇔ velocity(i) < velocity(j).

At the end of an episode, the train begins a deceleration
ending with a stop. This is the ending step. More formally,
let E = (rm, ..., rn) be an episode. The endingfragment

2Here, the velocity of the train at time t is denoted as velocity(t).



Eending = (rk, ...rn) of this episode is a list of readings
such as:

∀i, j ∈ [k, n], i < j ⇔ velocity(i) > velocity(j).

The traveling fragment is defined as the sublist of a
given episode between the starting fragment and the ending
fragment. During this fragment, there are accelerations or
decelerations, but no stop. More formally, let E be an
episode, Estarting its starting fragment, and Eending its
ending fragment. Then, the traveling fragment of E, denoted
as Etraveling , is a list of readings defined as:

Etraveling = E − Estarting − Eending .

Figure 1 shows the segmentation of an episode into three
fragments: the starting fragment, the traveling fragment and
the ending fragment.

III. ANOMALY DETECTION

In this section, we present how anomaly detection is
performed. We consider that we are provided with both one
database containing normal behavior on which knowledge is
extracted and data corresponding to one new journey.

A. Sequential Patterns Extraction

In order to characterize normal behavior, we extract in the
stored data sequential patterns, introduced in [7]. Sequential
patterns can be considered as an extension of association
rules [8] by handling timestamps associated to items. In the
context of sensor data for train maintenance, this problem is
adapted as follows.

Given a set of distinct attributes, an item, denoted as i =
Av , is a sensor A associated to its discretized collected value
v at a given time. An itemset, denoted as I , is an unordered
collection of items (i1i2...im). A sequence, denoted as s, is
an ordered list of itemsets 〈I1I2...Ik〉. A sequence database,
denoted as DB, is generally a large set of sequences. Given
two sequences s = 〈I1I2...Im〉 and s′ = 〈I ′1I ′2...I ′n〉, if there
exist integers 1 ≤ i1 < i2 < ... < im ≤ n such that
I1 ⊆ I ′i1 , I2 ⊆ I ′i2 , ..., Im ⊆ I ′im

, then the sequence s is a
subsequence of the sequence s′, denoted as s v s′, and s′

supports s.
The support of a sequence is defined as the fraction of total

sequences in DB that support this sequence. If a sequence
s is not a subsequence of any other sequences, then we say
that s is maximal.

A sequence is said to be frequent if its support is greater
than or equal to a threshold minimum support (minSupp)
specified by the user.

The sequential pattern mining problem is, for a given
threshold minSupp and a sequence database DB, to find
all maximal frequent sequences.

However, to extract interesting patterns in a database of
behavioral sequences, it is important to note that a frequent
sequence is interesting only if the gap between each itemset
is limited. By extracting frequent sequences in a database
of behavioral sequences, we want to highlight the frequent

interactions and correlations between sensors, but also be-
tween readings. However, the interest of those patterns is
strongly associated with the temporal gap between each pair
of itemsets in a sequence. To take this into consideration, we
modify the concept of subsequence in order to consider only
the consecutive itemsets in a sequence.

Definition 1: A sequence s is a contiguous subsequence
of the sequence s′, denoted as s vc s′, if there exist three
sequences s1, s2, and s3 such that s′ = s1 + s2 + s3, |s| =
|s2|, and s v s′.

Example 1: The sequence 〈(Aavg)(Bavg)〉 is a con-
tiguous subsequence of 〈(Alow)(Aavg)(AhighBavg)〉, but
〈(Alow)(Bavg)〉 is not.

In order to use a relevant set of sequential patterns,
we also have to consider the fact that handled data are
highly redundant. Indeed, the behavior described by sensor
measurements are generally stable for a reading to another.
This characteristic is particularly visible for data that change
slowly over time (e.g., a wheel temperature). Therefore, we
are dealing with very large sequences with consecutive item-
sets containing redundant information. Such sequences bring
two problems: (i) the mining of such sequences is particularly
difficult (the repetition of identical itemsets considerably
increases the search space) and (ii) it yields no additional
information. We therefore propose the concept of aggregated
sequence.

Definition 2: Let s = 〈I1I2...In〉 be a sequence. The
corresponding aggregated pattern, denoted by s∗, is the max-
imal subsequence of s respecting the following condition:

s∗ = 〈I∗1 I∗2 ...I∗i ...I∗m〉, such that ∀I∗i ∈ s∗, I∗i 6= I∗i+1.
Note that s∗ v s.

Example 2: Let s = 〈(AlowBavg)(Alow)(Alow)(Bhigh)〉.
The aggregated pattern of s, denoted by s∗, is:

s∗ = 〈(AlowBavg)(Alow)(Bhigh)〉.

To adapt the problem of mining sequential patterns in the
context of train monitoring data, we only consider the con-
tiguous aggregated sequential patterns. Given previous defi-
nitions, we can obtain patterns such as p = 〈(Alow)(Bavg)〉
with support(p) = 80%, meaning that “in 80% of train
journeys, a low value measured by sensor A is followed by
an average value measured by sensor B”.

This demonstrates the particular use of sequential patterns
for addressing maintenance problems. Easily interpreted (as
shown above), sequential patterns provide experts with better
understanding of normal behavior and detected anomalies.

B. Preliminary Definitions

During a journey, each component (and each sensor)
has a behavior which is related to the behavior of other
components. These interactions, both temporal and inter-
components, are described by a set of extracted sequential
patterns. Therefore, we want to make an evaluation of the



behavior of a component based on this obtained knowledge.
The main idea is relying on the following remarks:

• we can consider that a sensor behaves normally if we
find enough patterns in our knowledge base that validate
its current state,

• we can say that its behavior is anomalous if we find
enough patterns that contradict it,

Thus, for each reading and each sensor, we compute
two scores: a concordance score and a discordance score.
Depending on the value of these scores, we can then indicate
whether the behavior is normal, anomalous, or uncertain.
Below, we describe how the various needed scores are
calculated.

In order to use the extracted sequential patterns for measur-
ing the compliance of a sequence describing a new journey,
first of all we introduce the concept of covering sequence.

Definition 3: Let I be an itemset and s = 〈I1...Ii...In〉 a
sequence. I is covering s if ∀Ii ∈ s, I ⊆ Ii.

Example 3: The itemset (Alow) is covering the sequence
〈(AlowBlow)(Alow)〉.

Definition 4: Let p = 〈I∗1 ...I∗i ...I∗l 〉 be an aggregated
pattern and s = 〈I1...Ij ...Im〉 a sequence. p is covering
s, denoted by p ≺ s, if there exists a set of sequences
{s1, s2, ..., sm} such that:

i) s = s1 + s2 + ... + sm,
ii) ∀i|1 ≤ i ≤ m, I∗i is covering Ii. Moreover, I∗i is called

the corresponding itemset of Ii in p.
Example 4: Let s be a sequence, and p an aggregated

pattern, such that:

s = 〈
s1︷ ︸︸ ︷

(Alow)(AlowBlow)

s2︷ ︸︸ ︷
(AavgBavg)(AavgBavg)

s3︷ ︸︸ ︷
(Bhigh)〉

p = 〈(Alow)︸ ︷︷ ︸
I1

(AavgBavg)︸ ︷︷ ︸
I2

(Bhigh)︸ ︷︷ ︸
I3

〉.

We can note that s can be broken down into 3 sequences
s1, s2 and s3, such that I1 v s1, I2 v s2, and I3 v s3.
Thus, p ≺ s.

On the other hand, p is not covering the sequence

s′ = 〈(Alow)(AlowBlow)(Aavg)(AavgBavg)(Bhigh)〉

.

Using the notion of covering sequence, we can now
describe two types of patterns: (1) concordant patterns,
validating the behavior of a sensor at a given time, and (2)
discordant patterns contradicting this behavior.

Definition 5: Let A ∈ Ω , s = 〈I1I2...In〉 a sequence,
and p = 〈I∗1 I∗2 ...I∗m〉 an aggregated pattern. p is a concordant
pattern for A in the ith itemset of s, i.e., a (A, i)-concordant
pattern in s, if:

i) there exist integers h, j such that 1 ≤ h ≤ i ≤ j ≤ n,
and p ≺ 〈Ih...Ii...Ij〉.

ii) let I∗ be the corresponding itemset of Ii in p, there
exists an item Av ∈ I∗.

Example 5: Let A, B and C be sensors, p1 =
〈(AavgBlow)(Bavg)〉, p2 = 〈(Aavg)〉 and p3 =
〈(Alow)(Aavg)〉 three aggregated patterns, and s a sequence
such that:

s = 〈(AavgBlow)(AhighBavg)(AhighBhigh)〉.
The aggregated patterns p1 and p2 are (A, 1)-concordant

patterns. On the other hand, p3 is not a (A, 1)-concordant
pattern.

A discordant pattern for the state of a sensor at a given
time describes an unexpected behavior.

Definition 6: Let A ∈ Ω, s = 〈I1...Ii...In〉 a sequence
such that Ii contains an A-item, denoted by is, and p =
〈I∗1 I∗2 ...I∗j ...I∗m〉 an aggregated pattern such that I∗j contains
an A-item, denoted by ip. p′ is the sequence p where ip is
replaced by is in Ij .
p is a discordant pattern for A in the ith itemset of s, i.e., a
(A, i)-discordant pattern in s if:

i) p is not a (A, i)-concordant pattern,
ii) p′ is a (A, i)-concordant pattern.

The items is and ip are called discordant items. More
precisely, is is the discordant item of s, and ip is the
discordant item of p.

Example 6: Let A, B and C be sensors, p1 =
〈(AlowBlow)(Bavg)〉 and p2 = 〈(AhighBavg)〉 two aggre-
gated patterns, and s a sequence such that:

s = 〈(AavgBlow)(AhighBavg)(AhighBhigh)〉.
The aggregated pattern p1 is a (A, 1)-discordant pattern.

On the other hand, p2 is not a (A, 1)-discordant pattern.

C. Conformity Score

Preliminary definitions give us the possibility to identify,
for a given sensor A in the ith itemset of a given sequence s,
the set of (A,i)-concordant patterns denoted as Pc and the set
of (A,i)-discordant patterns denoted as Pd. We will also use
maxSize as max(size(p)), for p ∈ Pc ∪Pd, where size(p)
is the number of items in p.

In the following examples, we will consider the sequence
s, such that:

s = 〈(AlowBlow)(AlowBavg)(AlowBavg)(AavgBavg)〉 ,

and the set of aggregated patterns as well as their support
contained in Table II.

TABLE II
SET OF AGGREGATED PATTERNS.

ID Aggregated pattern Support
p1 〈(Alow)(AavgBavg)〉 25 %
p2 〈(AlowBavg)〉 65%
p3 〈(AlowBavg)(Aavg)〉 60%
p4 〈(AlowBlow)(Alow)(AlowBavg)(Aavg)〉 50%
p5 〈(AavgBavg)(Bavg)〉 45%
p6 〈(AhighBavg)〉 20%
p7 〈(AavgBhigh)(2high)〉 45%



TABLE III
MEMBERSHIP DEGREES OF PATTERNS.

ID weight µc µd

p1 0.75 0.125 0
p2 1.3 0.21 0
p3 1.8 0.3 0
p4 0.5 0.5 0
p5 -1.35 0 0.075
p6 -0.2 0 0.033
p7 0 0 0

SUM −→ 1.135 0.108

In order to calculate an overall conformity score, we have
to consider all concordant and discordant patterns, because
each of them will have an impact on the final score. However,
as we will see thereafter, patterns will affect the conformity
score differently, depending on specific features. We propose
to take into account the specificities of each pattern, by
defining a weight for each sequential pattern.

1) Concordant Patterns: All concordant patterns can not
be considered as equally relevant. For example in Table II,
p3 and p4 are (A, i)-concordant patterns in s, and have close
supports. However, p4 can be considered as more relevant
than p3 for defining the concordance of sensor A according to
our extracted knowledge about normal behavior. Indeed, the
situation described by p4 is more precise than that described
by p3. This precision is directly related with the size of a
concordant pattern.

In addition, by considering the (A,i)-concordant patterns
p1 and p3, we can highlight the fact that the support is also
important in order to evaluate the confidence we have in a
concordant pattern for estimating the conformity of a sensor
state. Indeed, p1 and p3 have the same size, but their support
is very different, involving that the situation described by p3
has been observed more often than that described by p1.

In consequence, the weight associated with concordant
pattern depends on its size and its support.

2) Discordant Patterns: In a similar way, discordant pat-
terns have different specific aspects. A discordant pattern
is also described by its support and its size. Note that the
important part of a discordant pattern is the part covering
the tested sequence. Therefore, in the weight of a discordant
pattern, we consider its size without the discordant item.

Moreover, to evaluate the weight of a discordant pattern,
it is important to consider a discordance degree, describing
the gap between this value and the “expected value”.

a) Discordance Degree: Let A ∈ Ω a sensor, and D =
dom(A). D is such that D = (v1, ...vi, ..., vn), where vi is a
discrete value.

Definition 7: Let p be a (A, i)-discordant pattern in a
sequence s, ip the discordant item of p, and is the discordant
item of s. We define the discordance degree of p as follows.

Fig. 2. Fuzzy partition.

Let us consider vk ∈ D and vl ∈ D, such that vk = value(ip)
and vl = value(is). The discordance degree of p, denoted
by discDegree(p), is:

discDegree(p) =
|l − k|
n − 1

.
Hence, the discordance degree is maximal and equal to 1
when the gap between the actual and the “expected” value
is maximal.

Example 7: In the previous sequence s, dom(A) =
dom(B) = (i1, i2, i3), such that i1 = low, i2 = avg, and
i3 = high. By considering the sequence s and the discordant
pattern p5, we can note that the discordant item of s is Alow

and the discordant item of p5 is Aavg . Thus, the discordance
degree of p5 is:

discDegree(p5) =
|2 − 1|

|dom(A)| − 1
= 1/2.

We can now define the weight of any aggregated pattern.
Definition 8: Let p be an aggregated pattern. The weight

of such a pattern is defined as follows:
weight(p) =

||p|| × support(p) if p ∈ Pc,

−(||p|| − 1) × support(p) × discDegree(p) if p ∈ Pd,

0 otherwise.
Note that the weight of a discordant pattern is negative, to

distinguish it from concordant patterns.

3) Fuzzy Partition: In order to consider each pattern in
a relevant way, we consider a fuzzy partition in two fuzzy
sets Concordant and Discordant defined over the universe U
of the values of pattern weights. The membership functions
of these fuzzy sets, respectively denoted as µc and µd are

defined as follows: µc(p) =

{
weight(p)
maxSize if p ∈ Pc,

0 otherwise.

and µd(p) =

{
|weight(p)|
maxSize if p ∈ Pd,

0 otherwise.
Obtained fuzzy partition is described in Figure 2.
In order to provide us with a general score of conformity,

we define at first two scores corresponding to the global score
of concordance and the global score of discordance.

Definition 9: The concordance score of a sensor A in the



ith itemset of a sequence s is: scoreconc(A, i) =
∑

p∈Pc

µc(p).

The discordance score of a sensor A in the ith itemset of a
sequence s is: scoredisc(A, i) =

∑
p∈Pd

µd(p).

Note that considering a membership degree here allows
to provide experts with more interpretable information about
relevant patterns (i.e., concordant and discordant patterns).

Example 8: Table III describes, for each pattern presented
in Table II, its weight and its membership degree in the fuzzy
sets Concordant and Discordant. For example, p3 is a (A,i)-
concordant pattern in s. Its weight is 1.8, its membership
degree is 0.5 in the Concordant fuzzy set and 0 in the
Discordant fuzzy set.

In addition, this table provide in its last line the concor-
dance score (1.135) and discordance score (0.108).

4) Conformity Score: For each sensor and each itemset
in a sequence, we defined how to calculate a concordance
score and a discordance score. We can now address the
problem of defining a global conformity score of a sensor A
in the ith itemset of a sequence, denoted as score(A, i). This
score, defined between -1 and 1, must meet the following
requirements:

• if score(c, t) is close to 1, the state of A in i is
considered as normal,

• if score(c, t) is close to -1, the state of A in i is
considered as abnormal,

• if score(c, t) is close to 0, the state of A in i is
considered as uncertain.

Definition 10: Let A ∈ Ω be a sensor and s a sequence.
The conformity score of A in the ith itemset of s, denoted
by score(A, i) is defined as follows:

score(A, i) =
scoreconc(A, i) − scoredisc(A, i)

max(scoreconc(A, i), scoredisc(A, i))
.

Example 9: By considering the previous examples, we can
now calculate the conformity score of A in the 3rd itemset
of s as follows:
score(A, 3) =

scoreconc(A, 3) − scoredisc(A, 3)
max(scoreconc(A, 3), scoredisc(A, 3))

=

1.135 − 0.108
1.135

= 0.905

One important issue when addressing the problem of
detecting anomalies concerns false alarms, especially when
data are noisy. Thus, it is possible that a sensor has a
bad score on a reading, which do not correspond to a real
problem. In this case, the score of the sensor then quickly
goes back to normal values. To avoid this, it is preferable to
take into account the surrounding score values of the same
sensor. The smoothed score is thus the average score of a
sensor over a specified window.

Definition 11: Let A ∈ Ω be a sensor, s a sequence, and
w the smoothing window. The smoothed conformity score of
A in the ith itemset of s, denoted by scorew(A, i) is defined
as follows:

scorew(A, i) =

i+w∑
j=i−w

score(A, j)

2w + 1
.

Fig. 3. Influence of the smoothing window on the anomaly score.

Figure 3 shows the evolution of the score of a sensor
during a fragment, with and without smoothing (with w = 3).
Without smoothing, we can see a decrease of the value that
could be interpreted as an anomalous behavior. However, the
immediate increasing of the score indicates that it is not a
real anomaly. The smoothed score is an efficient method for
restricting this phenomenon.

We have described throughout this section how to use a
list of sequential patterns, illustrating the normal behavior of
the monitored system, to detect abnormal behavior among
new collected data. This approach is particularly suited to the
problem of monitoring complex industrial systems because it
does not only declare a data sequence as normal or abnormal,
but provides also very precise information about the anomaly
detected: the localization of the fault (which sensor, which
component, etc..), the precise moment when this anomaly
occurred, and a score quantifying the seriousness of the
detected problem.

IV. EXPERIMENTAL RESULTS

In order to evaluate our proposal, several experiments were
conducted on a real dataset from data described in section
II, over a one-year period.

The discovery of frequent sequences has been performed
with the PSP algorithm described in [9] with the minimum
support set to 0.3.

We described in section III the approach used to detect
anomalies in new data. Thus, we can use it to classify new
fragments of journeys into two categories: normal data and
abnormal data. To evaluate our approach in an appropriate
manner, it is necessary to conduct experiments on both types
of data. However, if it is easy to find data which do not
contain faults, it is often more difficult to obtain a large data
set containing anomalies. For this reason, we have simulated



a set of anomalous data, on which we have conducted our
experiments.

To this end, we have used the real normal data set, and
we have corrupted the data in order to reproduce classic
behavioral anomalies on the values collected by sensors.
Anomalies generated are threefold:

• Blocked values (see Figure 4): the value collected by
a sensor is not refreshing. This anomaly is usually
related to a faulty sensor, or a problem of transmitting
information between the sensor and the database, but
very rarely describes a real problem on a component.

Fig. 4. Simulated anomaly: blocked values.

• Shifted values (see Figure 5): a value that is shifted
in comparison with the normal behavior of a sensor
(or group of sensors): a constant value is added (or
substracted) to the real collected value. This type of
anomaly may, for example, describe an abnormal over-
heating of a component.

Fig. 5. Simulated anomaly: shifted values.

• Random values (see Figure 6): in this case, collected
values are randomized. They describe an aberrant be-
havior without any link with the expected behavior.

We simulated these anomalies in order to build a data

Fig. 6. Simulated anomaly: random values.

TABLE IV
GLOBAL CONFUSION MATRIX.

Predict. Normal Predict. Anomalous
Real Normal 272 28

Real Anomalous 25 275

set containing about 600 fragments of episodes (i.e., 200
episodes) composed as follows:

• 300 are fragments of real data validated as normal (i.e.,
without anomalies),

• 300 fragments containing anomalies were generated
from normal data. The three types of anomalies de-
scribed above are distributed equally between these
fragments.

The approach was tested on the basis of cross-validation,
by segmenting the total set of data into 10 equal parts.
Thus, each part contains 600 fragments, of which 300 are
normal data. Note that the learning step (i.e., characterization
of normal behavior) is performed on normal data only. To
quantify the number of anomalous fragments in our data set,
we consider a fragment abnormal if its anomaly score falls
below -0.5.

Thus, we have obtained the confusion matrices presented
in Table IV, containing the average results obtained by cross
validation on the entire test set. We can note that the system
is well balanced and has similar qualities to both recognize
the normal behaviors, but also to identify anomalies.

In order to evaluate the results, we have calculated two
measures of quality widely used: the precision and the recall.

TABLE V
GLOBAL RECALL AND PRECISION.

Recall Precision
Real Normal 90.67% 91.58%

Real Anomalous 91.67% 90.76%

Global results 91.17% 91.17%



TABLE VI
CONFUSION MATRIX FOR RANDOM VALUES ANOMALIES.

Predict. Anomalous Predict. Normal
Real Anomalous 98 2

TABLE VII
CONFUSION MATRIX FOR BLOCKED VALUES ANOMALIES.

Predict. Anomalous Predict. Normal
Real Anomalous 85 15

Recall and precision are in all cases above 90% (see Table
V), so the approach limit both the number of false alarms
and the number of undetected anomalies.

Tables VI, VII and VIII contain the results for each type of
anomaly. We note that the results are very good to recognize
“random values” or “shifted values” anomalies. This is due
to the fact that the simulated behavior is very different from
a normal behavior. In contrast, “blocked values” anomalies
are different: the anomalous value may not be sufficiently
distant from “expected” values for detecting the problem.

V. CONCLUSION

In this paper, we addressed the problem of complex
system maintenance. Existing strategies looked at performing
curative maintenance, (making the necessary maintenance
operations after the occurrence of a failure). This is not
suited to this context as too costly and too dangerous. On
the other hand, a planned and systematic maintenance is too
expensive, although it can usually avoid serious failures. We
addressed the problem of developing an approach allowing
preventive maintenance, a good compromise between the
two previous solutions. Preventive maintenance consists in
detecting abnormal behavior early enough for performing the
necessary operations.

However, the complexity of such systems (e.g., trains,
industrial machinery, etc.) makes their behavior difficult
to understand and interpret. In these circumstances it is
particularly difficult to detect abnormal behavior that often
forsees significant and costly failures.

The problem addressed is particularly challenging since
errors in diagnosis may cause numerous inconveniences. We
thus developed an approach to use data collected by sensors
in order to analyze behaviors and allow the detection of
anomalies. Our contribution is divided into three parts. First,
we propose an adequate representation of data in order to
extract knowledge based on sensor data describing the past
normal behavior of systems. Second, we study the possibility
to extract sequential patterns in historical data thus improve
understanding of systems for experts, but also provide a
knowledge database used to develop an anomaly detection
method. Finally, we propose an approach to compare new
journeys with sequential patterns describing normal behavior.
We provide experts with an anomaly score for each sensor
and each sensor reading. The approach allows to locate

TABLE VIII
CONFUSION MATRIX FOR SHIFTED VALUES ANOMALIES.

Predict. Anomalous Predict. Normal
Real Anomalous 92 8

precisely the anomalies and to quantify the extent to which
the anomaly seems problematic.

One main advantage of the presented approach is that all
obtained results are easily interpretable for decision makers.
This is particularly important since users must be able to
make informed decisions. This feature is largely provided
by the use of sequential patterns easily translatable in natural
language, and fuzzy logic for understanding which patterns
are really significant for anomaly detection.

Although the presented work meets our expectations in
terms of results, it opens interesting perspectives. In par-
ticular, the development of a graphical user interface will
allow users to access results quickly and efficiently. Another
important aspect may be to adapt the approach to a real-
time context. This will detect the anomalies on running
trains. Furthermore, an interesting question may be further
investigated: how to manage the evolution of normal behavior
over time? This will conduct the knowledge database to
be incrementally updated to ensure knowledge validity over
time.
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[8] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” SIGMOD Rec., vol. 22, no. 2,
1993.

[9] F. Masseglia, F. Cathala, and P. Poncelet, “The psp approach for mining
sequential patterns,” in PKDD, ser. Lecture Notes in Computer Science,
J. M. Zytkow and M. Quafafou, Eds., vol. 1510. Springer, 1998.


